

Application Note

CMX649 Recommended Settings

AN/2WR/649_Settings/2 February 2013

Additional Resources	None
-------------------------	------

Introduction

The CMX649 voice codec offers the designer multiple voice coding options for a wide range of applications. While its flexibility lends itself to many different applications, the large number of possible CMX649 operating configurations can cause confusion. The purpose of this document is to alleviate this confusion by presenting optimised CMX649 register settings for various sampling rates.

The CMX649 data sheet should be consulted during the review of this document.

History

Version	Changes	Date
2.0	XTAL/CLOCK low frequency input limits included	20-02-13
1.0	Original Release	3-11-03

TABLE OF CONTENTS

1	Over	view	3
2	First (Order Integration vs Second Order Integration	3
3		iderations for Optimal Voice Quality	
		Companding Rule Selection	
		Quantization Step Height Selection	
		Integrator Time Constant Selection	
		Second Order Integration	
4		649 Register Settings	
	4.1	General Comments	6
	4.2	First Order Integration Settings	7
	4.2.1		
	4.2.2	24kbps	8
	4.2.3	32kbps	9
	4.2.4	64kbps	10
	4.2.5	128kbps	12
	4.3	Second Order Integration Settings	13
	4.3.1	16kbps	13
	4.3.2	24kbps	14
	4.3.3	32kbps	15
	4.3.4	64kbps	17
	4.3.5	128kbps	18
5	Conc	lusion	20

1 Overview

While the CMX649 can successfully serve in a wide range of voice coding applications, this innovative device is optimally positioned for wireless applications. Adaptive delta modulation (ADM), of which continuously variable slope delta modulation (CVSD) is a subset, is an ideal voice coding scheme for wireless applications due to its robust performance in the presence of bit errors.

The superiority of ADM/CVSD for wireless applications is demonstrated in the following figure:

The x-axis of this graph represents bit error rate; movement to the right on the x-axis represents an increasing number of bit errors, and consequently, a poorer quality signal. The y-axis represents "mean opinion score" (MOS), a subjective assessment of the recovered audio quality after encode/decode processing. Larger MOS scores translate to better audio quality as perceived by the listener. (A "MOS" score of three is considered the minimum for "toll quality" speech.) As can be seen from this graph, CVSD (and thus ADM) maintains better voice quality with a lower data rate than does PCM or ADPCM in a poor BER channel.

Since ADM is an outstanding voice coding technique for wireless applications, and since the CMX649 is ideally positioned to serve wireless applications, the register settings provided in this document are developed for the use of ADM voice coding.

2 First Order Integration vs Second Order Integration

"First order" integration refers to the use of a single integrator in the encoder feedback path. This technique is used with CVSD coding and it provides good voice quality. The addition of a second integration stage in the feedback path, referred to as "second order" integration, provides an improvement in voice quality over first order integration.

The difference between first order integration and second order integration comes down to fidelity at higher amplitude signals. Second order integration yields better fidelity for higher amplitude and higher frequency signals, but it does so at the expense of amplitude response on higher frequency signals. First order integration provides a flatter frequency response, lower idle channel noise, and somewhat higher distortion than does second order integration.

The following plot illustrates the difference in SINAD performance, for a given sampling rate, for first and second order integration.

3 Considerations for Optimal Voice Quality

3.1 Companding Rule Selection

Normally, the microphone input signal is compared to its predicted value in the CMX649 encoder. The encoder comparator outputs a logic one if the microphone input exceeds the predicted value, while a logic zero is output otherwise. The comparator output signal is then fed to the encoder delay register.

Changes of input signal amplitude that do not exceed the current quantization step size cause the comparator to output alternating ones and zeros. Rapidly changing input signals, however, can exceed the quantization step size and cause the encoder to be in a "slew-rate limited" condition (aka "slope overload"). When this happens, the ADM representation cannot change fast enough to keep up with the microphone input signal, and the comparator produces a string of ones or zeros as a result of the slope overload condition.

The encoder delay register allows from three to six bit times of slope overload to occur before the step size is changed. This time period, also called the "companding rule", is programmed with bits 9-8 of the DECODE (\$D1) and ENCODE (\$E1) ADM CONTROL registers.

For example, with the companding rule set to "3 of 3", a string of three consecutive ones or zeros from the comparator will be detected as slope overload. Once the slope overload condition has been detected, the encoder will adjust the quantization step size so that the ADM representation can more closely track the analogue input signal.

3.2 Quantization Step Height Selection

The quantization step heights are programmed with bits 12-10 of the DECODE (\$D1) and ENCODE (\$E1) ADM CONTROL registers.

Two problems can occur if the maximum and minimum step heights are improperly selected; slope overload and granular noise.

Slope overload occurs when the step size is too small; the digital representation cannot adequately track changes in the analogue input. Granular noise occurs when the step size is too large; input signal changes smaller than the step size are not digitised. Granular noise can occur for any step

size, so it is advantageous to keep the step size as low as possible while providing adequate protection from slope overload.

Two parameters of concern with any voice coding scheme are the decoded signal level and SINAD. The following considerations describe the impact of quantization step height selection on both of these important parameters.

SINAD Considerations:

- 1. In general, SINAD drops as input frequency increases. This degradation is due to slope overload, which is maximised with higher input signal amplitude and frequency. Slope overload degrades the SINAD measurement.
- 2. Offset compensation improves SINAD at mid & upper frequencies, but produces a SINAD hit at low frequencies.
- 3. For a given step height with higher input frequencies (e.g. 2kHz), SINAD is higher for lower input amplitude than for higher input amplitude.
- 4. For a large input amplitude at high input frequencies, large max and min step height yields the best SINAD. This is because the larger step heights help counteract slope overload better than small step heights.
- 5. For a large input amplitude at low input frequencies, large min step yields the best SINAD. Slope overload isn't as much of a problem with low frequencies because the codec has time to keep up with the signal. With large input signals, there will be fewer instances of threshold effects, so granular noise is reduced. The max step height selection is not critical to SINAD performance in this situation.
- 6. For a small input amplitude, small min step yields best SINAD across all input frequencies. This is because a small step height can easily keep up with input changes without adding too much granular noise. The size of the max step height for small input amplitudes is not critical to SINAD performance.

Decoded Signal Level Considerations:

- 1. For small input signals, a small minimum step height will maximise the decoder output level for all input frequencies.
- 2. For large input signals, a large max/min step height will maximise the decoder output level across all input frequencies.

These SINAD and decoded signal level recommendations can be summarized in the following table. These recommendations are general in nature; optimal step height settings are application dependent:

	Input Level at Encoder			
Max and Min Step Heights	Low (e.g. 50mVrms)		High (e.g. 490mVrms)	
for Optimal SINAD and Decoded Signal Level	Min	Small	Min	Large
Performance	Max	Not critical	Max	Large
Periormance	Min	Small	Min	Large
	Max	Not critical	Max	Large

Table 1: Summary of Recommendations for Max & Min Step Heights

3.3 Integrator Time Constant Selection

The estimator integrator is used in the encoder/decoder feedback path. The syllabic integrator adjusts the quantization step height. The time constant of the syllabic integrator determines how quickly the step height can increase or decrease. The shorter the time constant, the faster the step height can be changed.

The syllabic integrator typically has a time constant that is much longer (e.g. 20x to 30x) than the estimator integrator. For example, for Bluetooth compatibility at 64kbps:

- Syllabic integrator time constant = 16ms
- Estimator integrator time constant = 0.5ms

Typical values for syllabic integrator time constants are in the range of 5-10ms, but optimal values are application dependent.

The time constants for the syllabic and estimator integrators are selected in the DECODE (\$D1) and ENCODE (\$E1) ADM CONTROL register.

3.4 Second Order Integration

ADM uses an estimator integrator in the encoder feedback path. While this approach yields good voice quality, additional improvement in voice quality can be achieved by adding an additional integration stage to the estimator integrator. This process, known as "second order integration", introduces a second integrator in the estimator integration to create a smoother reconstructed signal at the decoder.

Second order integration is enabled or disabled with bits 4-3 of the DECODE (\$D1) and ENCODE (\$E1) ADM CONTROL registers.

When second order integration is used, the encoder can experience instability and oscillations. A "zero" can be added to the estimator integrator transfer function to improve stability with second order integration. The settings for zero selection are contained within bits 2-1 of the ENCODE (\$E1) ADM CONTROL register. For example, with a 64kbps data rate:

Encode ADM Contro	Zero Frequency for 64kbps	
Bit 2	Bit 1	Data Rate
0	0	N/A (first order estimator)
0	1	42.7kHz
1	0	25.6kHz
1	1	14.2kHz

Table 2: Example of Zero Frequency Determination

4 CMX649 Register Settings

4.1 General Comments

The objective of "good voice quality" is highly subjective; what is "good" for one listener may be poor for another. With this in mind, settings for both first and second order integration are provided so that the reader can experiment and obtain an optimal response for his/her application.

These settings have been tested in a laboratory environment and found to produce satisfactory voice quality. It is expected that these settings will result in satisfactory voice quality in realistic operating conditions as well, and the reader is encouraged to experiment with these settings and explore possible enhancements for specific applications.

Settings are provided for sampling rates of 16kbps, 24kbps, 32kbps, 64kbps, and 128kbps. Higher data rates provide higher fidelity speech, at the expense of greater transmitted bandwidth.

...results in register 61h (AAF/AIF Bandwidth) receiving a value of 00h, which then configures the AAF and AIF filters in the CMX649 analogue section for 2.9kHz mode.

Sections of pseudocode with only a "01" represent a "general reset" command, a single byte C-BUS transaction that resets the CMX649. This command is executed by transmitting a "01" to the CMX649 over its "Command Data" line; no register address is necessary with this command. Please review the CMX649 data sheet, if necessary, for more information about this command.

4.2 First Order Integration Settings

```
4.2.1
        16kbps
01
        // initialise device with general reset
        // this powers down everything excluding the xtal oscillator circuit
61
        // setup analogue section - filters set for 2.9KHz mode
62
        // volume=0dB, sidetone= -21dB and off
63
        80
        // audio level=0dB
64
        55
65
        55
        // power control, everything on low
70
        // codec mode=ADM unbuffered (continuous bit serial mode)
71
        0000
        // data scrambler and descrambler both off
72
        // using 4.096MHz master clock (NOTE: If a Xtal is to be used it should be a >8MHz
        device.)
        // filter clock prescaler divider=2, filter clock main divider=8 => 256kHz internal SCF clock
   // bit clock prescaler divider=4, encode and decode bit clock dividers=1, with constant divider=64
   => 16kbps sampling rate
73
        0078
        // PLL is off, bypass PLL data filter and power it down
        // Internal decode and encode clocks from decoder internal clock (synchronised to XTAL/CLK
        input)
81
        88
        // enable encoder and decoder with no IRQs
        00B8
D0
        // decimate by 8
        // decode ADM input from RX Data
        // ADM estimator drives output
        // VAD attack tc=4ms and decay tc=128ms
        // normal VAD outputs
D1
        0940
E1
        0940
        // ADM mode syllabic tc=10.7ms
        // step size dynamic range 5120/20
        // companding rule = 4 of 4
```

```
// principal fc=239Hz
        // second order fc=N/A
        // encoder zero fc=N/A decoder zero fc=N/A
        // decoder zero at 8kHz i.e. bit rate/2 disabled
D2
        0200
E2
        0200
        // VAD thresholds ~20mv
D8
        AA
E8
        AA
        // prime idle pattern into C-BUS ADM input registers
E0
        01B8
        // ADM encode feedback from comparator, idle channel enhancement active, otherwise as
        decoder
E3
        0020
   // load a small positive constant into encoder offset input reg to enable idle channel enhancement
4.2.2
       24kbps
01
        // initialise device with general reset
        // this powers down everything excluding the xtal oscillator circuit
61
        // setup analogue section - filters set for 2.9KHz mode
62
        // volume=0dB. sidetone= -21dB and off
63
        // audio level=0dB
64
        55
       55
65
        // power control, everything on low
70
        // codec mode=ADM unbuffered (continuous bit serial mode)
71
        // data scrambler and descrambler both off
72
        // using 4.096MHz master clock (NOTE: If a Xtal is to be used it should be a >8MHz
        device.)
   // filter clock prescaler divider =2, filter clock main divider=8 => 256kHz internal SCF clock
   // bit clock prescaler divider=1, encode and decode bit clock dividers=2.625, since constant
   divider=64 => 24kbps sampling rate
73
        0078
        // PLL is off, bypass PLL data filter and power it down
        // internal decode and encode clocks from decoder internal clock (synchronised to XTAL/CLK
        input)
```

```
81
        88
        // enable encoder and decoder with no IRQs
D0
        // decimate by 8
        // decode ADM input from RX Data
        // ADM estimator drives output
        // VAD attack tc=4ms and decay tc=128ms
        // normal VAD outputs
D1
        2960
E1
        2960
        // ADM mode syllabic tc=10.7ms
        // step size dynamic range 5120/20
        // companding rule = 4 of 4
        // principal fc=239Hz
        // second order fc=N/A
        // encoder zero fc=N/A decoder zero fc=N/A
        // decoder zero at 12kHz i.e. bit rate/2 disabled
D2
        0200
E2
        0200
        // VAD thresholds ~20mv
D8
E8
        AA
        // prime idle pattern into C-BUS ADM input registers
E0
        // ADM encode feedback from comparator, idle channel enhancement active, otherwise as
        decoder
E3
        0020
   // load a small positive constant into encoder offset input reg to enable idle channel enhancement
4.2.3
       32kbps
01
        // initialise device with general reset
        // this powers down everything excluding the xtal oscillator circuit
61
        // setup analogue section - filters set for 3.7KHz mode
62
        // volume=0dB, sidetone= -21dB and off
63
        80
        // audio level=0dB
64
65
        // power control, everything on low
70
        // codec mode=ADM unbuffered (continuous bit serial mode)
71
        0000
        // data scrambler and descrambler both off
72
        E940
```

```
// using 4.096MHz master clock (NOTE: If a Xtal is to be used it should be a >8MHz
        device.)
        // filter clock prescaler divider=2, filter clock main divider=8 => 256kHz internal SCF clock
        // bit clock prescaler divider=2, encode and decode bit clock dividers=1, since constant
        divider=64 => 32kbps sampling rate
73
        0078
        // PLL is off, bypass PLL data filter and power it down
        // internal decode and encode clocks from decoder internal clock (synchronised to XTAL/CLK
        input)
81
        88
        // enable encoder and decoder with no IRQs
D0
        00B8
        // decimate by 8
        // decode ADM input from RX Data
        // ADM estimator drives output
        // VAD attack tc=4ms and decay tc=128ms
        // normal VAD outputs
D1
        4980
E1
        4980
        // ADM mode syllabic tc=10.7ms
        // step size dynamic range 5120/20
        // companding rule = 4 of 4
        // principal fc=239Hz
        // second order fc=N/A
        // encoder zero fc=N/A decoder zero fc=N/A
        // decoder zero at 16kHz i.e. bit rate/2 disabled
D2
        0200
E2
        0200
        // VAD thresholds ~20mv
D8
        AA
E8
        AA
        // prime idle pattern into C-BUS ADM input registers
E0
        01B8
        // ADM encode feedback from comparator, idle channel enhancement active, otherwise as
        decoder
        0020
   // load a small positive constant into encoder offset input reg to enable idle channel enhancement
4.2.4
        64kbps
01
        // initialise device with general reset
        // this powers down everything excluding the xtal oscillator circuit
61
        // setup analogue section - filters set for 3.7KHz mode
62
        // volume=0dB, sidetone= -21dB and off
63
        // audio level=0dB
```

```
64
       55
65
       55
       // power control, everything on low
70
       // codec mode=ADM unbuffered (continuous bit serial mode)
71
       0000
       // data scrambler and descrambler both off
72
       E900
       // using 4.096MHz master clock (NOTE: If a Xtal is to be used it should be a >8MHz
       device.)
       // filter clock prescaler divider=2, filter clock main divider=8 => 256kHz internal SCF clock
       // bit clock prescaler divider=1, encode and decode bit clock dividers=1, since constant
       divider=64 => 64kbps sampling rate
73
       0078
       // PLL is off, bypass PLL data filter and power it down
       // internal decode and encode clocks from decoder internal clock (synchronised to XTAL/CLK
       input)
81
       88
       // enable encoder and decoder with no IRQs
D0
       00B8
       // decimate by 8
       // decode ADM input from RX Data
       // ADM estimator drives output
       // VAD attack tc=4ms and decay tc=128ms
       // normal VAD outputs
D1
       89C0
E1
       89C0
       // ADM mode syllabic tc=10.7ms
       // step size dynamic range 5120/20
       // companding rule = 4 of 4
       // principal fc=239Hz
       // second order fc=N/A
       // encoder zero fc=N/A decoder zero fc=N/A
       // decoder zero at 32kHz i.e. bit_rate/2 disabled
       0200
D2
E2
       0200
       // VAD thresholds ~20mv
D8
       AA
E8
       AA
       // prime idle pattern into C-BUS ADM input registers
E0
       // ADM encode feedback from comparator, otherwise as decoder
E3
       0000
       // clear encoder offset input reg to disable idle channel enhancement
```

```
4.2.5
        128kbps
01
        // initialise device with general reset
        // this powers down everything excluding the xtal oscillator circuit
61
        // setup analogue section - filters set for 7.0KHz mode
62
        // volume=0dB, sidetone= -21dB and off
63
        80
        // audio level=0dB
64
65
        // power control, everything on low
70
        // codec mode=ADM unbuffered (continuous bit serial mode)
71
        0000
        // data scrambler and descrambler both off
72
        FC00
        // using 8.0MHz master clock (NOTE: this is a different master clock frequency than
        those used for previous settings.)
   // filter clock prescaler divider=4, filter clock main divider=8.0 => 256kHz internal SCF clock
   // bit clock prescaler divider=1, encode and decode bit clock dividers=1, since constant divider=64
   => 128kbps sampling rate
73
        0078
        // PLL is off, bypass PLL data filter and power it down
        // internal decode and encode clocks from decoder internal clock (synchronised to XTAL/CLK
        input)
81
        // enable encoder and decoder with no IRQs
D0
        00B8
        // setup decoder
        // decimate by 8
        // decode ADM input from RX Data
        // ADM estimator drives output
        // VAD attack tc=4ms and decay tc=128ms
        // normal VAD outputs
        C9E0
D1
E1
        C9E0
        // ADM mode syllabic tc=10.7ms
        // step size dynamic range 5120/20
        // companding rule = 4 of 4
        // principal fc=318Hz
        // second order fc=none
        // encoder zero fc=N/A decoder zero fc=N/A
        // decoder zero at 64kHz i.e. bit_rate/2 disabled
D2
        0200
```

```
E2
        0200
        // VAD thresholds ~20mv
D8
E8
        AA
        // prime idle pattern into C-BUS ADM input registers
E0
        00B8
        // ADM encode feedback from comparator, otherwise as decoder
E3
        0000
        // clear encoder offset input reg to disable idle channel enhancement
      Second Order Integration Settings
4.3
4.3.1
        16kbps
01
        // initialise device with general reset
        // this powers down everything excluding the xtal oscillator circuit
61
        00
        // setup analogue section - filters set for 2.9KHz mode
62
        // volume=0dB, sidetone=-21dB and off
63
        80
        // audio level=0dB
64
65
        55
        // power control, everything on low
70
        // codec mode=ADM unbuffered (continuous bit serial mode)
71
        0000
        // data scrambler and descrambler both off
72
        E9C0
        // using 4.096MHz master clock (NOTE: If a Xtal is to be used it should be a >8MHz
        device.)
        // filter clock prescaler divider=2, filter clock main divider=8 => 256kHz internal SCF clock
   // bit clock prescaler divider=4, encode and decode bit clock dividers=1, with constant divider=64
   => 16kbps sampling rate
73
        0078
        // PLL is off, bypass PLL data filter and power it down
        // internal decode and encode clocks from decoder internal clock (synchronised to XTAL/CLK
        input)
81
```

// setup decoder // decimate by 8

00B8

D0

// enable encoder and decoder with no IRQs

```
// decode ADM input from RX Data
        // ADM estimator drives output
        // VAD attack tc=4ms and decay tc=128ms
        // normal VAD outputs
D1
        0951
E1
        0952
        // ADM mode syllabic tc=10.7ms
        // step size dynamic range 5120/20
        // companding rule = 4 of 4
        // principal fc=239Hz
        // second order fc=955Hz
        // encoder zero fc=1.7KHz decoder zero fc=N/A
        // decoder zero at 8kHz i.e. bit rate/2 enabled
D2
        0200
        0200
F2
        // VAD thresholds ~20mv
D8
        AA
E8
        AA
        // prime idle pattern into C-BUS ADM input registers
E0
        // ADM encode feedback from comparator, idle channel enhancement active, otherwise as
        decoder
E3
        0020
   // load a small positive constant into encoder offset input reg to enable idle channel enhancement
4.3.2
        24kbps
01
        // initialise device with general reset
        // this powers down everything excluding the xtal oscillator circuit
61
        // setup analogue section - filters set for 2.9KHz mode
62
        // volume=0dB sidetone=-21dB and off
63
        80
        // audio level=0dB
        55
64
65
        55
        // power control everything on low
70
        // codec mode = ADM unbuffered (continuous bit serial mode)
71
        0000
        // data scrambler and descrambler both off
72
        // using 4.096MHz master clock (NOTE: If a Xtal is to be used it should be a >8MHz
        device.)
        // filter clock prescaler divider =2, filter clock main divider=8 => 256kHz internal SCF clock
```

// bit clock prescaler divider=1, encode and decode bit clock dividers=2.625, since constant divider=64 => 24kbps sampling rate

```
73
        0078
        // PLL is off, bypass PLL data filter and power it down
        // internal decode and encode clocks from decoder internal clock (synchronised to XTAL/CLK
        input)
81
        88
        // enable encoder and decoder with no IRQs
D0
        00B8
        // setup decoder
        // decimate by 8
        // decode ADM input from RX Data
        // ADM estimator drives output
        // VAD attack tc=4ms and decay tc=128ms
        // normal VAD outputs
D1
        2979
E1
        297A
        // ADM mode syllabic tc=10.7ms
        // step size dynamic range 5120/20
        // companding rule = 4 of 4
        // principal fc=239Hz
        // second order fc=1910Hz
        // encoder zero fc=3.4KHz decoder zero fc=N/A
        // decoder zero at 12kHz i.e. bit rate/2 enabled
D2
        0200
        0200
E2
        // VAD thresholds ~20mv
D8
        AA
E8
        AA
        // prime idle pattern into C-BUS ADM input registers
E0
        // ADM encode feedback from comparator, idle channel enhancement active, otherwise as
        decoder
E3
   // load a small positive constant into encoder offset input reg to enable idle channel enhancement
4.3.3
        32kbps
01
        // initialise device with general reset
        // this powers down everything excluding the xtal oscillator circuit
61
        // setup analogue section - filters set for 3.7KHz mode
62
        BE
        // volume=0dB sidetone=-21dB and off
```

// audio level=0dB

63

```
64
       55
65
       55
       // power control, everything on low
70
       // codec mode=ADM unbuffered (continuous bit serial mode)
71
       0000
       // data scrambler and descrambler both off
72
       E940
       // using 4.096MHz master clock (NOTE: If a Xtal is to be used it should be a >8MHz
       device.)
       // filter clock prescaler divider=2, filter clock main divider=8 => 256kHz internal SCF clock
       // bit clock prescaler divider=2, encode and decode bit clock dividers=1, since constant
       divider=64 => 32kbps sampling rate
73
       0078
       // PLL is off, bypass PLL data filter and power it down
       // internal decode and encode clocks from decoder internal clock (synchronised to XTAL/CLK
       input)
       88
81
       // enable encoder and decoder with no IRQs
D0
       00B8
       // setup decoder
       // decimate by 8
       // decode ADM input from RX Data
       // ADM estimator drives output
       // VAD attack tc=4ms and decay tc=128ms
       // normal VAD outputs
D1
       4999
E1
       499A
       // ADM mode syllabic tc=10.7ms
       // step size dynamic range 5120/20
       // companding rule = 4 of 4
       // principal fc=239Hz
       // second order fc=1910Hz
       // encoder zero fc=3.4KHz decoder zero fc=N/A
       // decoder zero at 16kHz i.e. bit_rate/2 enabled
D2
       0200
E2
       0200
       // VAD thresholds ~20mv
D8
       AA
E8
       AA
       // prime idle pattern into C-BUS ADM input registers
E0
       // ADM encode feedback from comparator, idle channel enhancement active, otherwise as
       decoder
E3
```

// load a small positive constant into encoder offset input reg to enable idle channel enhancement

```
4.3.4
       64kbps
01
        // initialise device with general reset
        // this powers down everything excluding the xtal oscillator circuit
61
        // setup analogue section - filters set for 3.7KHz mode
62
        // volume=0dB, sidetone= -21dB and off
63
        80
        // audio level=0dB
64
65
        // power control everything on low
70
        // codec mode=ADM unbuffered (continuous bit serial mode)
71
        0000
        // data scrambler and descrambler both off
72
        // using 4.096MHz master clock (NOTE: If a Xtal is to be used it should be a >8MHz
        device.)
        // filter clock prescaler divider=2, filter clock main divider=8 => 256kHz internal SCF clock
        // bit clock prescaler divider=1, encode and decode bit clock dividers=1, since constant
        divider=64 => 64kbps sampling rate
73
        0078
        // PLL is off, bypass PLL data filter and power it down
        // internal decode and encode clocks from decoder internal clock (synchronised to XTAL/CLK
        input)
81
        // enable encoder and decoder with no IRQs
D0
        00B8
        // setup decoder
        // decimate by 8
        // decode ADM input from RX Data
        // ADM estimator drives output
        // VAD attack tc=4ms and decay tc=128ms
        // normal VAD outputs
D1
        89B9
E1
        89BC
        // ADM mode syllabic tc=10.7ms
        // step size dynamic range 5120/20
        // companding rule = 4 of 4
        // principal fc=239Hz
        // second order fc=1910Hz
        // encoder zero fc=3.4KHz decoder zero fc=N/A
        // decoder zero at 32kHz i.e. bit_rate/2 enabled
D2
        0200
E2
        0200
        // VAD thresholds ~20mv
```

```
D8
        AA
E8
        AA
        // prime idle pattern into C-BUS ADM input registers
E0
        // ADM encode feedback from comparator, otherwise as decoder
E3
        0000
        // clear encoder offset input reg to disable idle channel enhancement
4.3.5
        128kbps
01
        // initialise device with general reset
        // this powers down everything excluding the xtal oscillator circuit
61
        33
        // setup analogue section - filters set for 7.0KHz mode
62
        // volume=0dB, sidetone= -21dB and off
63
        // audio level=0dB
64
        55
65
        55
        // power control, everything on low
70
        // codec mode=ADM unbuffered (continuous bit serial mode)
71
        0000
        // data scrambler and descrambler both off
72
        EC00
        // using 8.0MHz master clock (NOTE: this is a different master clock frequency than
        those used for previous settings.)
   // filter clock prescaler divider=4, filter clock main divider=8.0 => 256kHz internal SCF clock
        // bit clock prescaler divider=1, encode and decode bit clock dividers=1, since constant
        divider=64 => 128kbps sampling rate
73
        0078
        // PLL is off, bypass PLL data filter and power it down
        // internal decode and encode clocks from decoder internal clock (synchronised to XTAL/CLK
        input)
81
        88
        // enable encoder and decoder with no IRQs
D0
        00B8
        // setup decoder
        // decimate by 8
        // decode ADM input from RX Data
        // ADM estimator drives output
        // VAD attack tc=4ms and decay tc=128ms
        // normal VAD outputs
D1
        C9F9
```

```
E1
        C9FC
        // ADM mode syllabic tc=10.7ms
        // step size dynamic range 5120/20
       // companding rule = 4 of 4
// principal fc=318Hz
        // second order fc=2546Hz
        // encoder zero fc=8.1KHz decoder zero fc=N/A
        // decoder zero at 64kHz i.e. bit_rate/2 enabled
D2
        0200
E2
        0200
        // VAD thresholds ~20mv
D8
        AA
E8
        AA
        // prime idle pattern into C-BUS ADM input registers
E0
        00B8
        // ADM encode feedback from comparator, otherwise as decoder
E3
        // clear encoder offset input reg to disable idle channel enhancement
```

5 Conclusion

The CMX649 provides the designer with many options for voice coding. It is hoped that the settings provided in this document will assist the designer in rapidly selecting the best configuration for their application

